The OER Knowledge Cloud makes use of cookies. By continuing, you consent to this use. More information.
Dropout prediction in MOOCs using learner activity features
Halawa, Sherif · Greene, Daniel · Mitchell, John

Alternate titleIssue No.37 Experiences and best practices in and around MOOCs
PublishedFebruary 2014
JournaleLearning Papers
Volume 37, Issue March 2014, Pages 1-10
Publisherelearningeuropa.info
Original PublicationEMOOCS 2014 conference
EditorsUllmo, Pierre-Antoine and Koskinen, Tapio
CountrySpain

ABSTRACT
Learners join a course with the motivation to persist for some or the entire course, but various factors, such as attrition or lack of satisfaction, can lead them to disengage or totally drop out. Educational interventions targeting such risk factors can help reduce dropout rates. However, intervention design requires the ability to predict dropouts accurately and early enough to allow for timely intervention delivery. In this paper, we present a dropout predictor that uses student activity features to predict which students have a high risk of dropout. The predictor succeeds in red-flagging 40% - 50% of dropouts while they are still active. An additional 40% - 45% are red-flagged within 14 days of absence from the course.

Keywords formative assessment · learning analytics · learning design · orchestration · teacher inquiry into student learning

Published atBarcelona
ISSN1887-1542
RefereedYes
Rightsby-nc-nd/3.0
URLhttp://openeducationeuropa.eu/en/article/Dropout-Prediction-in-MOOCs-using-Learner-Activity-Features?paper=136477
Export optionsBibTex · EndNote · Tagged XML · Google Scholar



AVAILABLE FILES
In_depth_37_1 (1).pdf · 370KB263 downloads



Viewed by 176 distinct readers




CLOUD COMMUNITY REVIEWS

The evaluations below represent the judgements of our readers and do not necessarily reflect the opinions of the Cloud editors.

Click a star to be the first to rate this document


POST A COMMENT
SIMILAR RECORDS

Early prediction and variable importance of certificate accomplishment in a MOOC
Ruipérez-Valiente, José A.; Cobos, Ruth; Muñoz-Merino, Pedro J.; Andujar, Álvaro; et al.
The emergence of MOOCs (Massive Open Online Courses) makes available big amounts of data about students' interaction with online educational platforms. This allows for the possibility of making predictions about future ...
Match: prediction; learning analytics; Spain

Driving student motivation in MOOCs through a conceptual activity-motivation framework
Khalil, Mohammad; Ebner, Martin
Massive Open Online Courses (MOOCs) require students’ commitment and engagement to earn the completion, certified or passing status. This study presents a conceptual Learning Analytics Activity-Motivation framework ...
Match: activity; learning analytics

Designing for educational technology to enhance the experience of learners in distance education: How Open Educational Resources, learning design and Moocs are influencing learning
Scanlon, Eileen; McAndrew, Patrick; O'Shea, Tim
The area of learning has a justifiable claim to be a special case in how it can be enhanced or supported by technology. In areas such as commerce and web design the aim is usually to ensure efficiency and support ...
Match: learning analytics; learning design

Weekly predicting the at-risk MOOC learners using dominance-based rough set approach
Bouzayane, Sarra; Saad, Inès; Kloos, Carlos Delgado; Jermann, Patrick; et al.
This paper proposes a method based on the Dominance-based Rough Set Approach (DRSA) to predict the learners who are likely to drop out the course during the next week of the MOOC (Massive Open Online Course) based on ...
Match: prediction; Spain

Characterizing video use in the catalogue of MITx MOOCs
Seaton, Daniel T.; Nesterko, Sergiy; Mullaney, Tommy; Reich, Justin; et al.
Lecture videos intended to substitute or parallel the on-campus experience are a central component of nearly all current Massive Open Online Courses (MOOCs). Recent analysis of resources used in the inaugural course ...
Match: learning analytics; Spain

Does gamification in MOOC discussion forums work?
Reischer, Matthias; Khalil, Mohammad; Ebner, Martin; Kloos, Carlos Delgado; et al.
Massive Open Online Courses (MOOCs) are a new form of learning environment aimed towards accessibility and openness using contemporary technologies. One of the MOOC's key features is the social interaction which usually ...
Match: learning analytics; Spain

MOOC design principles. A pedagogical approach from the learner’s perspective
Guàrdia, Lourdes; Maina, Marcelo; Sangrà, Albert; Koskinen, Tapio; Mor, Yishay
The debate around Massive Open Online Courses (MOOCs) is much more focused on the social, institutional, technological and economical aspects than on the need for development of new pedagogical approaches that provide ...
Match: learning design; Spain

Blended learning with MOOCs: Towards supporting the learning design process
Albó, Laia; Hernández-Leo, Davinia; Ubachs, George; Konings, Lizzie
Overview of papers on enhancement of European Higher Education as presented during the Online, Open and Flexible Higher Education Conference in Rome, October 2016 For some time now, universities have been making a ...
Match: learning design; Spain

The EMMA experience. Emerging patterns and factors for success
De Rosa, Rosanna; Ferrari, Chiara; Kerr, Ruth; Kloos, Carlos Delgado; et al.
Since 2008, when the first experiment with MOOCs took place, much has been said, written and explored. However, almost ten years later we are unable to say whether MOOCs are really a desirable learning experience and, ...
Match: learning analytics; Spain

Conversations from south of the equator: Challenges and opportunities in OER across Broader Oceania
James, Rosalind; Bossu, Carina
Recent decades have witnessed a number of fundamental structural shifts, both internally within the higher education academy and external to it, that have transformed the character of universities. A universal, ...
Match: learning design; Spain