Beyond the "c" and the "x": Learning with algorithms in massive open online courses (MOOCs)
Published | April 2018 |
Journal | International Review of Education Volume 64, Issue 2, Pages 161-178 |
Publisher | Springer Netherlands |
Country | United Kingdom, Europe |
ABSTRACT
This article examines how algorithms are shaping student learning in massive open online courses (MOOCs). Following the dramatic rise of MOOC platform organisations in 2012, over 4,500 MOOCs have been offered to date, in increasingly diverse languages, and with a growing requirement for fees. However, discussions of learning in MOOCs remain polarised around the "xMOOC" and "cMOOC" designations. In this narrative, the more recent extended or platform MOOC ("xMOOC") adopts a broadcast pedagogy, assuming a direct transmission of information to its largely passive audience (i.e. a teacher-centred approach), while the slightly older connectivist model ("cMOOC") offers only a simplistic reversal of the hierarchy, posing students as highly motivated, self-directed and collaborative learners (i.e. a learner-centred approach). The online nature of both models generates data (e.g. on how many times a particular resource was viewed, or the ways in which participants communicated with each other) which MOOC providers use for analysis, albeit only after these data have been selectively processed. Central to many learning analytics approaches is the desire to predict students' future behaviour. Educators need to be aware that MOOC learning is not just about teachers and students, but that it also involves algorithms: instructions which perform automated calculations on data. Education is becoming embroiled in an "algorithmic culture" that defines educational roles, forecasts attainment, and influences pedagogy. Established theories of learning appear wholly inadequate in addressing the agential role of algorithms in the educational domain of the MOOC. This article identifies and examines four key areas where algorithms influence the activities of the MOOC: (1) data capture and discrimination; (2) calculated learners; (3) feedback and entanglement; and (4) learning with algorithms. The article concludes with a call for further research in these areas to surface a critical discourse around the use of algorithms in MOOC education and beyond.ABSTRACT
Au-delà du « c » et du « x » : apprendre avec des algorithmes dans les formations en ligne ouverte à tous (FLOT) – Cet article examine la façon dont les algorithmes influencent l’apprentissage dans les formations en ligne ouverte à tous (FLOT ou MOOC). À la suite de l’essor fulgurant en 2012 des organismes de plateformes FLOT, plus de 4500 de ces formations ont été proposées jusqu’ici, dans un nombre croissant de langues et et avec une demande croissante de participation financière. Les débats sur l’apprentissage dans ces formations demeurent cependant polarisés autour des appellations xMOOC et cMOOC. Dans ce récit, le cours en ligne MOOC étendu ou plateforme (xMOOC), plus récent, adopte une pédagogie diffusée et fondée sur une transmission directe de l’information à un auditoire essentiellement passif (approche centrée sur l’enseignant), tandis que le modèle connectiviste (cMOOC) légèrement plus ancien opère uniquement un renversement simpliste de la hiérarchie, prenant les participants pour des apprenants très motivés, auto-dirigés et collaboratifs (approche centrée sur l’apprenant). La formule en ligne des deux modèles génère des données (par exemple fréquence de consultation d’une ressource donnée, modes de communication entre les participants), que les prestataires des MOOC exploitent à des fins d’analyse, néanmoins uniquement après avoir procédé à leur traitement sélectif. Au cœur de nombreuses approches d’analyse de l’apprentissage se trouve le désir de prédire le comportement futur des apprenants. Les éducateurs doivent être conscients du fait que l’apprentissage dans les cours en ligne ne dépend pas seulement des enseignants et des apprenants, mais aussi des algorithmes : les instructions qui effectuent des calculs automatisés sur les données. La formation devient de plus en plus mêlée à une « culture algorithmique » qui définit les rôles pédagogiques, la réalisation des prévisions, et qui influence la pédagogie. Les théories établies de l’apprentissage semblent totalement inadéquates pour aborder le rôle agentif des algorithmes dans le champ éducatif des MOOC. Cet article identifie et examine quatre principaux domaines d’influence des algorithmes sur les activités du cours en ligne : 1) capture et discrimination de données, 2) apprenants évalués par le système, 3) retour d’information et enchevêtrement, 4) apprentissage avec les algorithmes. L’article conclut par un appel à une recherche complémentaire dans ces domaines pour susciter un discours critique sur l’usage des algorithmes dans les cours en ligne et au-delà.Keywords | algorithm · learning · learning analytics · massive open online course · student data |
Published at | Netherlands |
ISSN | 1573-0638 |
Refereed | Yes |
Rights | © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
DOI | 10.1007/s11159-018-9707-0 |
Export options | BibTex · EndNote · Tagged XML · Google Scholar |
AVAILABLE FILES
Viewed by 98 distinct readers
CLOUD COMMUNITY REVIEWS
The evaluations below represent the judgements of our readers and do not necessarily reflect the opinions of the Cloud editors.










Click a star to be the first to rate this document
▶ POST A COMMENT
SIMILAR RECORDS
A new ecology for learning : An online ethnographic study of learners’ participation and experience in Connectivist MOOCs
Saadatmand, Mohsen; Kumpulainen, Kristiina; Ilsley, Paul
This dissertation focuses on Massive Open Online Courses (MOOCs) which have emerged and heralded as new online learning environments able to serve large numbers of students. Identifying two main types of MOOCs known as ...
Match: learning
A cross-modal analysis of learning experience from a learner’s perspective
Nkuyubwatsi, Bernard
Abstract: Learning experience has been one of the most debated aspects of Massive Open Online Courses (MOOCs). Various perceptions on learning experience offered by MOOCs have led to many claims about the quality of ...
Match: learning
A new ecology for learning: An online ethnographic study of learners’ participation and experience in connectivist MOOCs
Saadatmand, Mohsen; Kumpulainen, Kristiina; Ilsley, Paul
This dissertation focuses on Massive Open Online Courses (MOOCs) which have emerged and heralded as new online learning environments able to serve large numbers of students. Identifying two main types of MOOCs known as ...
Match: learning
Learning objects, learning design, and adoption through succession
Weller, M.
THIS PAPER examines the concept of learning objects, the advantages they offer, and related issues. Learning objects focus on content, while the Learning Design specification addresses pedagogy. Underlying both of these ...
Match: learning
Making academic OER easy: Reflections on technology and openness at Oxford University
Wild, Joanna; Highton, Melissa; Fresen, Jill
Due to its stringent entry requirements, academic reputation and world ranking, Oxford University in the United Kingdom is perceived by some as being a closed, exclusive, and elitist institution. As learning ...
Match: united kingdom; europe
From MOOC to GOAL
Siemsen, Sabine; Uden, Lorna; Liberona, Dario; Feldmann, Birgit
Higher Education tries to meet the call for openness and internationalization, moving (parts of) its learning-environments from brick and mortar universities to virtual learning environments. This implies a different ...
Match: europe
Case Study 3: Exploring Open Educational Resources for informal learning
Alexander Mikroyannidis; Connolly, Teresa; Kroop, Sylvana; Mikroyannidis, Alexander; Wolpers, Martin
This chapter explores the potential of informal learning within a Personal Learning Environment (PLE), as well as the identified informal learning cultures that have evolved from the use of Open Educational Resources ...
Match: learning; united kingdom; europe
Implementing multimedia content development strategy in open schooling: The experience of the Namibian College of Open Learning (NAMCOL)
Commonwealth of Learning; Namibian College of Open Learning
This manual was produced as a direct outcome of a Commonwealth of Learning (COL) funded project on capacity building in the production of multimedia learning resources in the context of open schooling. NAMCOL’s ...
Match: learning
Some issues affecting the sustainability of open learning courses
Aczel, James; Cross, Simon; Meiszner, Andreas; Hardy, Pascale; et al.
While there has been much excitement in recent years about the potential of Web 2.0 principles, open educational resources (OER) and cross-border educational programmes to catalyse enhanced pedagogies, the world ...
Match: learning
Co-regulation in technology enhanced learning environments
Kaplan, Jonathan; Uden, Lorna; Sinclair, Jane; Tao, Yu-Hui; Liberona, Dario
This paper discusses the importance of strategy use in regulating cognitive processes, with a particular interest in co-regulation of the learning by peers in technology enhanced learning environments. Research on ...
Match: learning; massive open online course; europe