Time-dependent recommender systems for the prediction of appropriate learning objects
Krauß, Christopher

PublishedJune 2018
Type of workDoctoral Thesis
PeriodicalPages 1-301
InstitutionTechnische Universität Berlin
AdvisorHauswirth, Manfred
CountryGermany, Europe

ABSTRACT
This dissertation deals with adaptive learning technologies which aim to optimize Technology Enhanced Learning (TEL) offerings to fit the individual learner’s needs. Thereby, Recommender Systems play a key role in supporting the user’s decision process for items of interest. This works very well for e-commerce and Video on Demand services. However, it is found to be the case that these traditional Recommender Systems cannot be directly transferred to TEL as the recommendation of course items follows a particular educational paradigm. The special conditions of this paradigm are first investigated and then taken into account for the realization of new algorithms.In order to allow a broad interoperability of a Recommender System with other technical components, a set of open standards and specifications results in a reference architecture for such an adaptive learning environment. Based on the realized architecture, activity data have been collected from students using course materials available online – the courses themselves comprising face-to-face lectures backed up by digital representations of the presented contents, blended learning settings as well as online-only courses. The courses provided access to the course materials via a novel Learning Companion Application. This app also presents learning recommendations to make the content selection more efficient and effective.
Thereby, this work indicates that an educational Recommender System should not be evaluated using standard evaluation frameworks that utilize, for instance, a classical n-fold cross-validation. For this reason, a time-dependent evaluation framework is defined to investigate the precision of the Top-N learning recommendations at various points in time. Moreover, a new measure is introduced to determine the Mean Absolute Timeliness Deviation between an item recommendation and the time when it is actually accessed by the user. Subsequently, four major techniques for Recommender Systems are realized and applied to the collected data, evaluated with the time-dependent evaluation framework and successively optimized. As a reference implementation, a traditional Collaborative Filtering algorithm is developed and extended to incorporate time information. The results are then compared to the results of other time sensitive algorithms: an Item-based Collaborative Filtering approach which has previously been applied to TEL and a new learning path generator which incorporates a set of contextual information. Finally, a novel time-weighted Knowledge-based Filtering algorithm is presented and exhaustively analyzed. The evaluation results indicate that time-dependent filtering which incorporates multi-contextual activity data can produce the most precise recommendations.

ABSTRACT
Die vorliegende Dissertation beschäftigt sich mit adaptiven Lerntechnologien, die sich an die individuellen Bedürfnisse der Lernenden anpassen. Dabei spielen vor allem Empfehlungssysteme eine Schlüsselrolle, da sie den Entscheidungsprozess der Benutzer unterstützen. Das funktioniert sehr gut für E-Commerce und Video on Demand-Dienste. Allerdings können diese Mechanismen nicht einfach für den Bereich des Technologie-gestützten Lernens übertragen werden, da die Empfehlungen von Kursinhalten einem sehr speziellen Paradigma folgen. Die Eigenschaften dieses Paradigmas werden in der Dissertation erst analysiert und anschließend als Basis für neue Algorithmen berücksichtigt. Um eine breite Interoperabilität des Empfehlungssystems mit anderen technischen Komponenten zu gewährleisten, wurden offene Standards und Spezifikationen umgesetzt, mit deren Hilfe eine Referenzarchitektur für adaptive Lernumgebungen umgesetzt wurde. Basierend darauf wurden Aktivitätsdaten in Echtwelt-Kursen gesammelt – von Präsenzunterricht, welcher durch digitales Vorlesungsmaterial unterstützt wurde, über Blended Learning-Umgebungen bis hin zu ausschließlichen Online-Kursen. Alle Kursteilnehmer hatten Zugriff auf die Kursmaterialien über die Lernbegleiter-App. Der Entscheidungsprozess der Lernenden wurde durch ein Lernempfehlungssystem unterstützt. Dabei hat sich herausgestellt, dass herkömmliche Evaluationstechniken, wie die n-Fold Cross- Validation, nicht für die Evaluation von Lernempfehlungssystemen geeignet sind. Deshalb wurde ein zeitabhängiges Evaluations-Framework definiert, mit dem die Präzision von Top-N-Lernempfehlungen zu verschiedenen Zeitpunkten analysiert werden kann. Zusätzlich wurde eine neuartige Messgröße eingeführt, die „Mean Absolute Timeliness Deviation”, die den zeitlichen Abstand zwischen Empfehlungen und dem späteren Abruf der Inhalte durch den Benutzer misst. Darauf basierend konnten vier Haupttechniken für Empfehlungssysteme realisiert und auf die gewonnenen Datensätze angewandt werden. Dann wurden diese mit dem definierten Evaluations- Framework ausgewertet und sukzessive optimiert. Als Referenzimplementierung diente ein traditioneller.

Keywords adaptive learning · adaptives Lernen · intelligent tutoring systems · intelligente Tutorensysteme · technologie-gestütztes Lernen · technology enhanced learning · time-aware recommender systems · time-dependent evaluation techniques · zeit-abhängige Evaluationstechniken · zeit-sensitive Empfehlungssysteme

Published atBerlin, Germany
LanguageGerman
RefereedDoes not apply
RightsAttribution 4.0 International (CC BY 4.0)
DOI10.14279/depositonce-7119
URLhttps://depositonce.tu-berlin.de//handle/11303/7957 10.14279/depositonce-7119
Export optionsBibTex · EndNote · Tagged XML · Google Scholar


Viewed by 71 distinct readers




CLOUD COMMUNITY REVIEWS

The evaluations below represent the judgements of our readers and do not necessarily reflect the opinions of the Cloud editors.

Click a star to be the first to rate this document


POST A COMMENT
SIMILAR RECORDS

Open Education: Auf dem Weg zu einer offenen Hochschulbildung
Deimann, Markus
»Open Education«, also das bildungspolitische Ziel, Bildung frei verfügbar zu machen, ist Gegenstand eines lebendigen Diskurses. Markus Deimann gibt einen systematischen Überblick zum Thema »Offene Bildung/Open ...
Match: germany; europe

Is peer review an appropriate form of assessment in a MOOC? Student participation and performance in formative peer review
Meek, Sarah E.M.; Blakemore, Louise; Marks, Leah
Many aspects of higher education must be reconceptualised for massive open online courses (MOOCs). Formative and summative assessment of qualitative work in particular requires novel approaches to cope with the numbers ...
Match: appropriate; europe

Europe regional consultation for the 2nd World OER Congress
Grech, Alex; Kanwar, Asha S.; Banerjee, Indrajit; Makovec, Maja Brenčič; et al.
The Commonwealth of Learning is holding six Regional Consultations in the lead up to the 2nd World Open Educational Resources (OER) Congress, which is scheduled to be held in Ljubljana, Slovenia, from 18 to 20 September ...
Match: europe

OER’s in Sub-Saharan Africa – An appropriate response to the challenge of education for all? The TESSA experience in Zambia.
Dart, Gareth
The initiatives of Education For All (EFA) and the Millennium Development Goals (MDGs) have helped put the debate surrounding basic education firmly in the educational, developmental and economic spotlight. They have ...
Match: appropriate

Opportunities and threats of the MOOC movement for higher education: The European perspective
Schuwer, Robert; Jaurena, Ines Gil; Aydin, Cengiz Hakan; Costello, Eamon; et al.
The Massive Open Online Course (MOOC) movement is the latest ‘big thing’ in Open and Distance Learning (ODL) which threatens to transform Higher Education. Both opportunities and threats are extensively discussed in ...
Match: europe

Gap between MOOC designers' and MOOC learners' perspectives on interaction and experiences in MOOCs: Findings from the global MOOC quality survey
Stracke, Christian M.; Tan, Esther; Texeira, António Moreira; Texeira Pinto, Maria do Carmo; et al.
Massive Open Online Courses (MOOCs) became very popular during the last years leading to an increasing global debate about their quality. To address the quality issues, several research surveys and instruments were ...
Match: europe

Researchers from Open University of the Netherlands report details of new studies and findings in the area of computing (the role of knowledge sharing self-efficacy in sharing open educational resources)
Computer Weekly News
By a News Reporter-Staff News Editor at Computer Weekly News – Investigators publish new report on Computing. According to news reporting from Heerlen, Netherlands, by VerticalNews journalists, research stated, "In ...
Match: europe

Free digital learning opportunities for migrants and refugees: An analysis of current initiatives and recommendations for their further use
Colucci, Elizabeth; Smidt, Hanne; Devaux, Axelle; Vrasidas, Charalambos; et al.
The final report of MOOCs4inclusion, designed and financed by the Joint Research Center of the European Commission, summarises the research conducted for a five-month study (July-December 2016) on the efficiency and ...
Match: europe

OER: A European policy perspective
Sabadie, Jesús Maria Alquézar; Muñoz, Jonatan Castaño; Punie, Yves; Redecker, Christine; Vuorikari, Riina
The potential benefits of OER have led many European governments to implement policies supporting their creation and use. This chapter aims to put these OER policies in context, discussing their focus and scope and ...
Match: europe

A strategic response to MOOCs: How one European university is approaching the challenge
Brown, Mark; Costello, Eamon; Donlon, Enda; Giolla-Mhichil, Mairead Nic; et al.
This paper briefly outlines some of the macro level claims, counter-claims and unresolved debates surrounding the rapid growth of Massive Open Online Courses (MOOCs) in Higher Education. It then reports insights, ...
Match: ; europe